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Abstract

Concept maps have been widely put to educational uses. They possess a number of appealing features which make them a promising
tool for teaching, learning, evaluation, and curriculum planning. This paper presents self-associated concept mapping (SACM) which
extends the use of concept mapping by proposing the idea of self-construction and automatic problem solving to traditional concept
maps. The SACM can be automatically constructed and dynamic updated. A Constrained Fuzzy Spreading Activation (CFSA) model
is proposed to SACM for supporting rapid and automatic decisions. With the successful development of the SACM, the capability of
Knowledge-based systems (KBS) can be enhanced. The concept and operational feasibility of the SACM is realized through a case study
in a consultancy business. The theoretical results are found to agree well with the experimental results.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Cognitive psychology stated that people do not learn by
memorizing, instead, they learn by summarizing, relating,
and organizing concepts into their cognitive structures
[1]. New knowledge is assimilated into their cognitive
structures through construction and not merely acquired
[30]. Based on this learning theory, a method known as
concept maps was developed. Concept maps are widely
used as a means of visualizing one’s inner cognitive struc-
tures. Concept maps require users to identify, graphically
display, and link key concepts by organizing and analyzing
information. They make the structure of knowledge visual-
ly explicit and conceptually coherent. There are numerous
applications for concept maps including communication
[25,34,40], teaching [2,12,22,31], assessing users under-
standing [6,37,38], curriculum design [7,28], planning
[11,36], etc. Numerous of tools and commercial software
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have been developed including construction tools of con-
cept maps in different education and business settings
[9,14,16,17,20,21,27,39], tools for handheld devices
supporting mobile learning [3], tools for navigation and
discovery concept map in a repository [26] and so on.
Moreover, several researchers have developed different
methodologies to extend the usage of concept map
[5,6,17,18,24].

In the past, concept maps are manually constructed by
the users and the usages of concept maps are focused on
educational purpose. Although a number of concept map-
ping tools are available, the construction and interpreta-
tion of concept maps are still heavily relied on human
being. Traditional maps are static after the development
process, which require human interventions for any later
changes of the maps. The construction of the maps is diffi-
cult, time consuming and expensive. Moreover, the inter-
pretation of concept maps rely on human who is not
suitable tool for computational inference.

On contrary to the current trend of the development of
concept maps, this paper attempts to give the idea of
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Fig. 1. An example of concept map.
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concept maps with self-construction ability and automatic
problem-solving ability. The extended concept map is
called Self-Associated Concept Map (SACM). SACMs
can be automatically constructed and dynamically updated
from a knowledge repository with structural historical
records. A Constrained Fuzzy Spreading Activation
(CFSA) model is incorporated in the SACM which enables
the decision supporting function for providing rapid and
automatic decisions. With SACM, the capability of Knowl-
edge-based systems (KBS) can be enhanced and extended.
The paper starts by reviewing the related work and then
describes the proposed SACM. The capability of the
SACM is realized by a case study in a consultancy business.
The results indicate that the proposed idea of SACM is well
suited for KBS with real-world data.

2. A comparison between Traditional Concept Mapping and

Self-Associated Concept Mapping

2.1. Traditional concept maps

Concept map has its root from its relationship to mem-
ory and learning theory. Semantic memory theory believes
that knowledge is stored in a network format where con-
cepts are connected to each other [8]. The more tightly
interconnected the knowledge representation, the more
likely it is that a person will recall information at the
appropriate time. As a result, a network representation
can be used to show the integration of different concepts.
The theory has resulted in different terms being used to
describe concept maps including semantic networks
[13,15] and knowledge maps [19].

In 1984, Novak proposed concept map to represent
knowledge [29–31]. It is an instructional method that inte-
grates new information into an old knowledge structure.
It promotes conceptual understanding by displaying mean-
ingful patterns of ideas. Knowledge is graphically displayed
as a network of nodes and links. A concept map consists of
sets of propositions. Each proposition is made up of a pair
of nodes and a link connecting them. The labeling of nodes
contains the concepts. The labeling of the links provides
information about the nature of the relationships. Cross-
links sometimes appear to show the connections between
and among concepts, create an interdisciplinary space for
inquiry and learning, or provide examples for clarifying
the meaning of a given concept. Concept maps are varying
on the basis of an individual area of interest and style. Fig. 1
shows an example of concept map. There are propositions
in the concept map: (Concept Map consists of Concepts),
(Concept Map consists of Relations), (Concepts denoted
by Nodes), (Relations denoted by Links).

Several research studies have developed different meth-
odologies to extend the usage of concept map. Lin et al.
[24] introduce a concept map focusing on the propositions
with weights, which is named ‘‘weighted concept map’’.
Chen et al. [5] proposed an extended concept maps called
attributed concept maps (ACM). ACM associates its
concept nodes and relation links with attribute values
which indicate the relative significance of concepts and
relationships in knowledge representation. A Two-Phase
Concept Map Construction (TP-CMC) algorithm is pro-
posed by Sue et al. [35] to automatically construct a con-
cept map of a course by historical testing records. They
apply Fuzzy Set Theory to transform the numeric testing
records of learners into symbolic, apply Education Theory
to further refine it, and apply Data Mining approach to
find its grade fuzzy association rules. Then, they use multi-
ple rule types to further analyze the mined rules and a heu-
ristic algorithm is proposed to automatically construct the
concept map according to the results of the analysis.

Recently, more and more researches are applying con-
cept maps on knowledge management. Concept mapping
is provided as a knowledge management tool so that
concepts can be captured, queried, and perhaps most
importantly connections discovered and reasoned about
[14]. Current research work is focusing on the construction
of theoretical frameworks and design of human–machine
interfaces (e.g. [19,26]). They provide tools for creating cus-
tom templates, publishing the maps as web pages, associat-
ing documents and URLs with concepts and some query
and search capabilities. However, this is insufficient for per-
forming such knowledge management activities since most
of the work is still relied on human being. It seeks for a tool
with the ability to automatically discover implicit connec-
tions, generate new maps, maintain evolution of maps, rea-
soning, and inferencing.

In order to support the automatic inference of concept
map, spreading activation (SA) is adopted. Similar to con-
cept maps, the SA model also has its roots from its rela-
tionship with human memory [33]. It has often been
associated with semantic networks. During spreading, the
activation input of a node in the network is calculated
based on the following equation:

Ij ¼
X

i

Oiwij ð1Þ

where Ij is the total input of node j, Oi is the output of node
i connected to node j, and wij is a weight associated to the
link connecting node i to node j.

After the input value of a node has been computed, the
activation level of the node is determined by a function of
the input:



Fig. 2. An example of SACM.
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Aj ¼ f ðI jÞ ð2Þ

where Aj is the activation level of node j, f is the activation
function, and Ij is the input of node j.

The output of the node, Oj, is usually its activation level,
Aj. The output value of the node is fired to all nodes con-
nected to it. Hence, the activation spreads pulse after pulse
until a termination condition has been met.

The most salient fault of pure SA is that the activation
tends to quickly spread over the entire network [32]. The
shortcoming can be partially overcome by the implementa-
tion of rules to control the activation. This new model is
called Constrained Spreading Activation (CSA). Some
common constraints are distance constraint, fan-out con-
straint, path constraint and activation constraint [10].

In this paper, the authors attempt to propose a new
extended concept map: Self-associated Concept Map
(SACM). It has a knowledge representation which is simi-
lar to the ACM mentioned above. Contrasting to manually
constructed ACM, SACM can be automatically construct-
ed and dynamically updated from a knowledge repository
with structural historical records. On the other hand, the
automatic construction method of SACM is different to
TP-CMC that mentioned above. TP-CMC applies fuzzy
set theory on measuring the grading of the historical
records, while SACM applies fuzzy set theory on dividing
the concepts within the historical records which increase
the ability of inference. For knowledge inference, a new
model named Constrained Fuzzy Spreading Activation
(CFSA) is proposed. It integrates fuzzy logic and CSA so
as to provide more precise, rapid and automatic solutions.
2.2. Self-Associated Concept Mapping

2.2.1. Knowledge representation

The graphical representation provides insights for
describing the relationships among different knowledge
concepts. A SACM is represented by a simple graph with
nodes and edges. The nodes represent concepts relevant to
a given domain and the association relationships between
them are depicted by directed edges. An example of SACM
is shown in Fig. 2. The importance of the concepts and the
associations between different concepts are indicated by the
depth of color i.e. darker color indicates higher importance.
(The detail symbolic representation of knowledge represen-
tation, knowledge elicitation, and knowledge inference is
put in the appendix for interested readers.)
2.2.2. Knowledge elicitation

With the advanced development of computer technolo-
gy and Knowledge-based system (KBS) in the recent dec-
ade, organizations are able to record the working
activities of each worker at a dramatically lower cost. Some
KBSs have been developed to serve this purpose. The
knowledge of knowledge workers can be assimilated and
stored in a structured format into the knowledge reposito-
ries of KBSs when they use the KBSs for performing their
daily work [4]. This enables the offer of vast new mines of
information on individual working knowledge automati-
cally and objectively. By following the learning theory,
individuals’ abilities to work depend on whether they have
an appropriate concept map of working. In the proposed
approach, the concept map of each individual is construct-
ed based on the information in the knowledge repositories
of the KBS and it enables dynamic update by adding new
records to the knowledge repository.

The elicitation algorithm consists of 3 steps:

Step 1: Constructing a temporary SACM based on the
inputs of the new record.
• Distinct concepts are extracted from the new

record for the construction of a set of concept
nodes and the degree of importance of concept
is assigned.

• If the value of fields of the new record is sym-
bolic, a concept node is added and its corre-
sponding degree of importance of the added
concept is assigned to be 1.

• If the value of fields of the new record is numeric,
more than one concept nodes may be added
according to the value. For example, if the value
is ‘‘Quantity (0.7 High, 0.2 Medium, 0 Low)’’,
then two new concept nodes: ‘‘Quantity: High’’
and ‘‘Quantity: Medium’’ are added. The corre-
sponding degree of importance of the added con-
cepts ‘‘Quantity: High’’ and ‘‘Quantity:
Medium’’ are 0.7 and 0.2, respectively.

• Assign the degree of importance of relation for
each pair of concepts.

Step 2: Combining the temporary SACM with the original
SACM.
• The nodes and relations of the temporary

SACM are matched with that of the original



Table 1
A simplified knowledge repository

Case ID Product type Diameter Unit Price

1 Prototype Lens 7 1400
2 Mould Insert 12 2000
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SACM. If there is any missing concept existed,
the degree of importance of that concept and
the degrees of importance of that concept’s asso-
ciated relations are assigned to be 0.

• The degrees of importance of the concepts and
the degrees of relation among concepts of the
original SACM are adjusted based on that of
the temporary SACM.

Step 3: The parameters of the combined SACM is adjusted
and the combined SACM is normalized.
Fig. 3. The membership functions of Diameter.

Fig. 4. The membership functions of Unit Price.
2.3. Knowledge inference

A new model named Constrained Fuzzy Spreading Acti-
vation (CFSA) which integrates fuzzy logic and CSA is
introduced for knowledge inference. It consists of 3 steps:

Step 1: The enquiry/problem is converted into SACM
format
• This step is the same as step 1 of knowledge

elicitation.

Step 2: The activation level of each node of the SACM is
computed
• The nodes and relations of enquired SACM are

matched with that of SACM that used for per-
forming knowledge inference. If there is any miss-
ing concept existed, the degree of importance of
that concept and the degrees of importance of that
concept’s associated relations are assigned to be 0.

• The activation level of each node of the SACM is
computed based on the degree of importance of
the nodes and relations.

Step 3: Generation of the result
• The concept nodes of the result field are extracted

and their corresponding activation levels are
calculated.

• If the extracted concept node is a fuzzy value, the
activation level is computed by defuzzifiion by the
centre of gravity (COG) method.

• If the extracted concept node is symbolic, the
concept node with the highest activation level is
selected to be the result.
Table 2
Temporary results of SACM that assimilates 1 record
2.4. An application example

In this section, an application example is used to illus-
trate the proposed methodology. This is a simple example
to show how a SACM is constructed and how a SACM
infers quantitative prediction. Table 1 shows a simplified
knowledge repository that stores 2 quotation records. Each
record includes a Case ID, Product Type, Diameter and
Unit Price. Case ID provides a unique index of the records.
Product Type contains symbolic values. Diameter and Unit
Price contain numerical values. The membership functions
of Diameter and Unit Price are shown in Figs. 3 and 4,
respectively. In this example, Diameter is represented by
3 fuzzy regions which are Small, Medium and Large,
respectively. The Unit Price is represented by 3 fuzzy
regions which are Low, Medium and High, respectively.

In order to construct a new SACM, all distinct concepts
from the first record are firstly extracted for the construc-
tion of a set of concept nodes C, the set of degrees of
importance of concept F are assigned, and the set of
degrees of importance of relations L for each pair of con-
cepts are assigned, based on the step 1 of knowledge elici-
tation that described in Section 2.2.2. The results are shown



Table 3
Results of SACM that assimilates 1 record

P = (Fmax = 1,Lmax = 0.8,N = 1).

Fig. 5. SACM that assimilates 1 record.

Table 5
Temporary results of SACM that assimilates 2 records
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in Table 2. In step 2, since it is the first record to be assim-
ilated, there is no original SACM (i.e. N = 0). Thus, F and
L are kept the same. In step 3, F and L are normalized, and
the parameters of P = (Fmax,Lmax,N) are assigned. The
results are shown in Table 3 and the graphical representa-
tion is depicted in Fig. 5.

To illustrate how to assimilate new records to the exist-
ing SACM, the following illustration is considered. Step 1
is similar to the previous section, the set of concept nodes C
of the new record, the set of degrees of importance of con-
cept F of the new record, and the set of degrees of impor-
tance of relations L for each pair of concepts of the new
record are assigned (i.e. the second record). The results
are shown in Table 4. In step 2, the nodes and relations
of the current SACM is matched with that of the previous
SACM. For any identified missing concept, the degree of
importance of that concept and the degrees of importance
of that concept’s associated relations are assigned to 0.
Then F and L of the 2 SACMs are combined by Eqs.
(A.2) and (A.4). The result is shown in Table 5.
M = (C,F,L,P) is the previous SACM that assimilates
record 1 whileM 0 = (C 0,F 0,L 0,P 0) is the current SACM that
assimilates record 1. Hence, M00 = (C00,F00,L00,P00) is the
combined SACM. In step 3, the combined SACM is nor-
Table 4
Temporary results of SACM that assimilates the second record
malized, and the parameters are assigned. The results are
shown in Table 6 and the graphical representation is shown
in Fig. 6.

To illustrate how to infer an enquiry to perform quan-
titative prediction by SACM, the following illustration is
considered. It is assumed that there is an enquiry of
requesting the Unit Price of {Product Type: Prototype
Lens, Diameter: 9}, and the SACM that constructed
above is used as the inference SACM. Based on the steps
of knowledge inference in Section 2.3, the enquiry is first-
ly converted into SACM format. The results are shown in
Table 7. In step 2, the enquiry SACM is matched with the
SACM that inferencing the SACM. The activation level
of each concept is then computed by Eq. (A.10). The
results are shown in Table 8. In step 3, the concepts of
the result field (i.e. Unit Price) and their corresponding
activation levels are extracted (i.e. Unit Price:Low:0.21,
Unit Price:Medium:0.93). The consequent membership
functions at the level of corresponding activation levels
are then clipped and aggregated as shown in Fig. 7. The
aggregated fuzzy set is then defuzzified by Eq. (A.11),
the result is 1816. Thus, the suggested Unit Price of the
enquiry is 1816.



Table 6
Results of SACM that assimilates 2 records

P = (Fmax = 0.9,Lmax = 0.5,N = 2).

Table 7
SACM of the example of enquiry

Table 8
Activation level of each concept of this example

Fig. 7. Aggregated fuzzy set of this example.

Fig. 6. SACM that assimilates 2 records.

Table 9
The structure of each record in the knowledge repository

Case number

Customer information Customer ID
Staff information Staff ID

Quotation date

Product information Product type
Material
Diameter
Radius
Surface type
Quantity
Rough blank
Inspection

Decision Unit price
Expected delivery date
Payment method
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3. Experimental verification

To evaluate the effectiveness of the proposed SACM
model, it is applied in a consulting company. The company
provides various consulting services in design, manufacture
and evaluation of surface quality of precision optical com-
ponents. A KBS has been built in the company [4]. Based
on the KBS, the knowledge of experienced consultants
can be captured continuously in a structured format such
as cases. Table 9 shows the structure of each record in
the knowledge repository. The case number is assigned
sequentially for providing unique designation of individual
case. As different customers may entitle different privileges
on the customer services (e.g. discount, shorter delivery
time, longer payment term, etc.), the customer information
is important to the decision making process. The product
information is related to the product type, material, geom-
etry, quantity, requirements of inspection, and preparatory
instruction of the machining jobs. The decision is given in
form of suggested quotation price, expected delivery date
and payment method. When there is any requests for quo-
tation, customer will provide the product information, and
then the staff needs to make the decision based on the pro-
vided information.

To facilitate the quotation process, a decision support
function is developed based on Case-Based Reasoning
(CBR) approach as mentioned in [4]. CBR is a problem-
solving approach that relies on past and similar cases to
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find solutions to new problems [23]. It simulates human
decision making processes and enables the accumulation
of previous experience. One of the important advantages
of CBR is its learning capability. Its problem-solving abil-
ity improves with the increasing amount of accumulated
cases. CBR cycle starts with the codification of customer
request as a new case. Then the new case is compared with
all the cases in the knowledge. The similarity between 2
cases is determined as follows:

Similarity ¼

Pm

j¼1

wjsimðvo
j ; v

r
jÞ

Pm

j¼1

wj

ð3Þ

where m is the number of inputs, wj is the weighting of the
jth input, vo

j and vr
j are values of the jth inputs and that for

the retrieved cases, simðvo
j ; v

r
jÞ is the similarity function for

the jth inputs as follows:
For numerical value, the similarity is calculated based on

the normalized distance of the feature between two cases:

simðvo
j ; v

r
jÞ ¼ 1�

jvo
j � vr

jj
maxj �minj

ð4Þ

where maxj and minj are the maximum and minimum value
of the jth input

For symbolic value:

simðvo
j ; v

r
jÞ ¼ 1 if vo

j ¼ vr
j ð5Þ

simðvo
j ; v

r
jÞ ¼ 0 if vo

j 6¼ vr
j ð6Þ

The retrieved cases are ranked in descending order accord-
ing to the similarity. The most similar case is then selected
for suggestion.

In this paper, the proposed approach SACM is compared
with the CBR approach and a group of human being who are
laymen of the domain. The fuzzy membership functions used
in SACM and the weightings used in CBR are determined by
the expertise of the company. The accuracy of the suggested
results is calculated by the following equations:
Fig. 8. The results of SAC
a ¼ ð1� jv
s � vrj

vr
Þ � 100% ð7Þ

where a is the accuracy, vr is the actual value and, vs is the
suggested value by the model.

Initially, there is only one case is used as the learning
record and a case is used as the testing record. After the
model/human has answered the same testing record, the
actual result of the testing record will be provided. In other
words, one new learning record is added to the knowledge
base of the model/human (i.e. two learning records in the
knowledge base of the model/human). Then, another test-
ing record is provided.

The results of average accuracy of SACM, CBR, and
human against the number of learning records are shown
in Fig. 8 and Table 10. The results show that the accuracy
of CBR is the highest and the accuracy of SACM is similar
to the accuracy of human. Based on the correlation analy-
sis, SACM has a higher correlation with the result of lay-
men of the domain, while CBR has a higher correlation
with the actual results (which is provided by the expert of
the domain).

CBR has both its strengths and weaknesses; there are
several characteristics of using SACM over CBR:

(i) Smaller data size. Since CBR needs to store all histor-
ical records in terms of cases in the knowledge base, it
occupies huge amount of storage space. It constantly
requires the maintenance of the case base. For
SACM, the amount of data size increases with the
number of distinct concepts. It reduces the data size
to minimal.

(ii) Faster speed. When there is a new enquiry, CBR
needs to compare the new case with all the cases in
its case base. It is inefficient when the number of cases
of the case base is large. For SACM, the computation
speed remains stable.

(iii) Graphical representation. Graphical representation of
SACM provides users a rough image of the domain
effectively and efficiently.
M, CBR and human.



Table 10
Experiment results

Model Average
accuracy (%)

Correlation with
human layman

Correlation with
human expert

SACM 83.27 0.90 0.35
CBR 87 0.69 0.47
Human

layman
83.75 1 0.36

Human
expert

100 0.36 1
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(iv) Higher accuracy against human laymen. From the
experiment, it shows that SACM has a higher accura-
cy and higher correlation with the results which are
provided by the laymen of the domain. It shows that
it is good at emulating laymen learning.

(v) Lower accuracy against human experts. From the
experiment, it in interesting to note that CBR has
a higher accuracy and higher correlation with the
actual results which are provided by the domain
expert. It shows that it is good at emulating expert
reasoning.

(vi) Narrower range of choices of algorithms. CBR covers
a very broad range of systems and algorithms. The
performance of the model can be fine tuned for differ-
ent application systems.

4. Conclusions

The performance of KBS relies on its abilities on
knowledge elicitation, knowledge representation and
knowledge inference. In this paper, a Self-Associated
Concept Map (SACM) is proposed for enhancing these
abilities. SACM has its origin from concept map. It is
extended and enhanced so as to apply to KBS. An elic-
itation algorithm which embedded with fuzzy set is pre-
sented. It provides an automatic solution for the
construction and dynamic update of SACM from data
without human intervention. The graphical network
graph of knowledge representation facilitates the knowl-
edge sharing of different concepts or ideas among users.
It has the advantages of simplicity, naturalness, vision-
less, and clarity. An inference algorithm of SACM which
embedded with fuzzy set is built for quantitative predica-
tion. It has been evaluated through a case study under-
taken in a consultancy business. The results are
compared with a widely used problem-solving method,
i.e. case-based reasoning (CBR), and human laymen of
the consultancy business. The results show that the
knowledge inference of SACM has advantages of higher
laymen learning capability, smaller data size and faster
speed than CBR. It would be useful for simulating
human learning activities. Further work will be done
on exploring the usage of SACM to other applications
and how it may work with more difficult and unstruc-
tured knowledge area.
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Appendix A. Knowledge representation

A SACM is defined with all necessary notations as
follows:

Let K = [0,1],
A SACM is a 3-tuple (C,F,L,P) where
C = (C1,C2,. . .,Cn) is a set of n distinct concepts forming
the nodes of a SACM
F = (F1,F2,. . .,Fn) is a function that at each Ci associates
its degree of importance Fi with Fi 2 K

L:(Ci,Cj) fi Lij is a function that a pair of concept
(Ci,Cj) associates its degree of importance Lij, with
Lij denoting a weighting of directed edge from Ci to
Cj, Lij 2 K if i „ j, and Lij = 0 if i = j, L represents a
set of degree of association between all concepts in
a SACM.
P = (Fmax,Lmax,N) is a set of parameter which facilitates
the computation of knowledge elicitation and inference,
with Fmax and Lmax indicate the maximum value of F
and L before normalization, respectively, and N indi-
cates the total number of records that have been assim-
ilated to this SACM.

Appendix B. Knowledge elicitation

The elicitation algorithm consists of 3 steps:

Step 1: A temporary SACM is constructed based on the
information of the new record.
• Distinct concepts are extracted from the new

record for the construction of a set of concept
nodes C and the degree of importance of concept
Fi for each Ci 2 C is assigned by the following
conditions;
Let S be the set of fields of the knowledge repos-
itory, and V be the set of values of fields of the
new record, where Vi corresponds to Si for Vi 2 V

and Si 2 S
If Vi is a symbolic value, a concept node is added
as a text value in the format of Si:Vi, and the cor-
responding degree of importance of the added
concept is assigned to be 1. For example, if
Si = ‘‘Product Type’’ and Vi = ‘‘Mould Insert’’,
then a new concept node ‘‘Product Type: Mould
Insert’’ is added to C, and the corresponding
degree of importance of added concept F = 1;
If Vi is a numerical value, Vi is fuzzified based on
the corresponding membership function of Si,
concept node(s) is/are added as text value(s) in
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the format of Si:Vi’s belonged membership(s),
and the corresponding degree(s) of importance
of the added concept(s) is/are assigned to be the
corresponding degree(s) of membership. For
example, if Si = ‘‘Quantity’’ and Vi = (0.7 High,
0.2 Medium, 0 Low), then two new concept
nodes: ‘‘Quantity: High’’ and ‘‘Quantity: Medi-
um’’ are added to C, the corresponding degree
of importance of the added concepts F = 0.7 of
concept ‘‘Quantity: High’’ and F = 0.2 of concept
‘‘Quantity: Medium’’.

• Assign the degree of importance of relation Lij for
each pair of concepts (Ci,Cj), where i,j 2 n and n

is the total number of distinct concepts C, by
the following equation:

Lij ¼MinðV i; V jÞ ðA:1Þ

Step 2: The temporary SACM is combined with the origi-
nal SACM;
• The nodes and relations of the temporary SACM

are matched with that of the original SACM. If
there is any missing concept existed, the degree
of importance of that concept and the degrees
of importance of that concept’s associated rela-
tions are assigned to be 0.

• L and F of the original SACM are adjusted based on
L and F of the temporary SACM by the following
equations:
Let Fi, F 0i, F 00i be the original, temporary and com-
bined degree of importance of Ci, N be the total
number of records of the original SACM.

For N > 0; F 00i ¼
F 0i þ NF iF max

N þ 1
ðA:2Þ

For N ¼ 0; F 00i ¼ F 0i ðA:3Þ

Let Lij, L0ij, L00ij be the original, temporary and combined de-
gree of relations between Ci and Cj, N be the total number
of records of the original SACM.

For N > 0; L00i ¼
L0i þ NLiLmax

N þ 1
ðA:4Þ

For N ¼ 0; L00i ¼ L0i ðA:5Þ

Step 3: The parameters of the combined SACM is adjusted
and the combined SACM is normalized.
• The parameters of the combined SACM, P = (Fm-

ax,Lmax,N), is adjusted by the following equations:
F max ¼MaxðF 1; F 2; . . . ; F nÞ ðA:6Þ
Lmax ¼MaxðL1; L2; . . . ; LmÞ ðA:7Þ
• The total number of record N is increased by 1.
• L and F of the combined SACM is normalized to

the range between 1 and 0 by the following
equations:
NormalizeðFÞ ¼ F

F max

ðA:8Þ

NormalizeðLÞ ¼ L

Lmax

ðA:9Þ
Appendix C. Knowledge inference

A new model named Constrained Fuzzy Spreading Acti-
vation (CFSA) which integrates fuzzy logic and CSA is
introduced for knowledge inference. It consists of 3 steps:

Step 1: The enquiry/problem is converted into SACM
format
• This step is the same as step 1 of knowledge

elicitation.

Step 2: The activation level of each node of the SACM is
computed which is used for performing knowledge
inference
• The nodes and relations of enquired SACM are

matched with that of SACM that used for per-
forming knowledge inference. If there is any miss-
ing concept existed, the degree of importance of
that concept and the degrees of importance of that
concept’s associated relations are assigned to be 0.

• The activation level of each node of the SACM is
computed which is used for performing knowl-
edge inference by the following equations:
Let M 0 = (C 0,F 0,L 0,P 0) be the enquired SACM,
and M = (C,F,L,P) be the SACM that are used
for performing knowledge inference, Aj be the
activation level of node j

Aj ¼
X

i

F 0iF iLij ðA:10Þ
Step 3: Generation of the result
• The concept nodes of the result field are extracted

and their corresponding activation levels are
based on the following conditions:
If the extracted concept nodes are fuzzy values,
their consequent membership functions at the
level of corresponding activation levels of that
concept nodes are clipped. Then the clipped
membership functions are aggregated into a sin-
gle fuzzy set. The fuzzy set is then defuzzified
by the centre of gravity (COG) method and the
result is displayed. The COG of fuzzy set A on
the interval a1 to a2 with membership function
lA is given by the following equation:

COGðAÞ ¼
R a2

a1
lAðxÞxdx

R a2

a1
lAðxÞdx

ðA:11Þ

• If the extracted concept nodes are not fuzzy val-
ues, the concept node with the highest activation
level is selected to be the result.
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