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will require a sustained and imaginative effort on the part of researchers

across the sciences. o )

Kenneth Boulding summarized science as consisting of “testable and
partialiy tested fantasies about the real world.” The science of n.oBmwax
systems is not a new way of doing science but rather one in which new

fantasies can be indulged.

CHAPTER 2

Complexity in Social Worlds

I adore simple pleasures. They are the last refuge of the
complex.
—(scar Wilde, The Picture of Dorian Gray

When a distinguished bus elderly scientist states that
something is possible, he is almost certainly right. When he
states that something is impossible, he is very probably
wrong.

~Arthur C. Clarke, Report on Planet Three

WE ARE SURROUNDED by complicated social worlds. These worlds are
composed of multitudes of incommensurate elements, which often make
them hard to navigate and, ultimately, difficuit to understand. We would,
however, like to make a distinction berween complicated worlds and
complex ones. In a complicated world, the various elements thar make up
the system maintain a degree of independence from one another. Thus,
removing one such element (which reduces the level of complication)
does not fundamentally alter the system’s behavior apart from that which
directly resulted from the piece that was removed. Complexity arises
when the dependencies among the elements become important. In such a
system, removing one such element destroys system behavior to an extent
that goes well beyond what is embodied by the pasticular element that is
removed.

Complexity is a deep property of a system, whereas complication is
not. A complex system dies when an element is removed, but complicated
ones continue to live on, albeit slightly compromised. Removing a seat
from a car makes it less complicated; removing the timing belt makes it
less complex {and useless). Complicated worlds are reducible, whereas
complex ones are not.

While complex systems can be fragile, they can also exhibit an unusual
degree of robustess to less radical changes in their component parts.
The behavior of many complex systems emerges from the activities of
lower-level components. Typically, this emergence is the resuit of a very
powerful organizing force that can overcome a variety of changes to the
lower-level components. In a garden, if we eliminate an insect the vacated
niche will often be filled by another species and the ecosystem will
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continue to function; in a market, we can introduce new kinds of traders
and remove old traders, yet the system typically maintains its ability to
set sensible prices. Of course, if we are too exireme in such changes, say,
by eliminating a keystone species in the garden or all but one seller in the
marke, then the system’s behavior as we know it collapses.

When 2 scientist faces a complicated world, traditional tools that rely
on reducing the system 1o its atomic elements allow us to gain insight.
Unfortunately, using these same tools to understand complex worlds
fails, because it becomes impossible to reduce the system without killing
it. The ability to collect and pin to a board all of the insects that live 1nn
the garden does littie ro lend insight into the ecosystem contained therein.

“The innate features of many social systems tend to produce complexity.

Social agents, whether they are bees or people or robots, find themselves
enmeshed in a web of connections with one another and, through a
variety of adaptive processes, they must successfully navigate through
their world. Social agents interact with one another via connections.
These connections can be relatively simple and stable, such as those
that bind together a family, or complicated and ever changing, such as
those that link traders in a marketplace. Social agents are also capable of
change via thoughtful, but not necessarily brilliant, deliberations about
the worlds they inhabit. Social agents must continually make choices,
either by direct cognition or a reliance on stored (but not immurtable)
heuristics, about their actions. These themes of connections and change
are ever present in ail social worlds.

The remarkable thing about social worlds is how quickly such con-
nections and change can lead to complexity. Social agents must predict
and react to the actions and predictions of other agents. The various
connections inherent in social systems exacerbate these actions as agents
become closely coupled to one another. The result of such a system is that
agent interactions become highly nonlinear, the system becomes difficult

to decompose, and complexity ensues.

2.1 THE StanpinG OVATION PROBLEM

To begin our exploration of complex adaptive social systems we consider
a very simple social phenomenon: standing ovations (Schelling, 1978;
Miller and Page, 2004). Standing ovations, in which waves of audience
members stand o acknowledge a particularly moving performance,
appear to arise spontaneously.’ Although in the grand scheme of things

1There are circamstances, such as the annual State of the Union address before the U.S.
Congress, where such behavior is a bit more orchestrated.
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.mﬁm:%mm. ovations may not seem all that important, they do have some
Important parallels in the real world that we will %mmcmm later. Moreover,
@m% BOS% a convenient starting point from which to explore some ke u
issues in modeling complex social systems. ’
Suppose we want to construct a model of a standing ovation. There is
no set method or means by which to do so. To model such a phenomenon
we could employ a variety of mathematical, computational, or even
m:mnmww. devices. The actual choice of modeling approach n_m,@msam on
MMM M< ims, needs, and even social pressure emanating from professional
Wmmmm.&mmm of the approach, the quest of any model is to ease thinki
while mz.m retaining some ability to illuminate reality. e
A Q.Enm_ mathematical model of a standing ovation might take the
mo:.oéw:m tack. Assume an audience of N people, each of whom receive
a Emsm_ that depends on the actual quality of the performance hmw
&..S.v give the signal received by person i. We might further m@m,nm.. the
signal process by, say, assuming a functional form such as s;(g) = Qw. €
where ¢ 15 a normally distributed random variable with a NEmmm of Nmnm
and mﬂmdama deviation of ¢. To close the model, we might hypothesize
that in Tesponse to the signal, each person stands if and ow_w iFsilgy =T
where T is some critical threshold above which people are so Hw%ﬂ d b :
the MmHmOMBmsnm that they stand up and applaud. o
. O:.\ms this simple mathematical model, how much of reality can w
ifluminate? The model could be used to make predictions vaEH wo%
many people would stand. We could tie this prediction to key features of
the model; thus, we can link the elements like the quality (g) of the per-
mOmE.mmnmu the standing threshold {T), and even the standard nmmimaom of
the signal (o'} to the likelihood of an initial ovation of a given size. Given
the current torm of the model, that is about the mxﬁmnﬁa& what .ém can
mnmnrmﬁ These predictions do provide some illumination on reality, but
ﬁrm.% fail to illuminate some of the key elements that make this _,,AWW_QE
S0 interesting 1 the first place (like the waves of subsequent mﬂmnﬂm:qv
Given &EU we might want to amend the model to shed a bit more m&.z
on mwm. subject at hand. It is probably the case that people respond to Mgm
vwwmﬁo.ﬁ of others in such situations. Therefore, we can add a parameter
o 1.5% gives the percentage of people who must stand for others to ignore
their ::.Qmm signals and decide to stand up regardiess. In some mm_%m like
economics, we might even delve a bit deeper into the notion of Q, and
see mm we can tie it to some first principles, for example, perhaps people
realize that their signals of the performance are MEmmannm and :;:mm m%m
update them using the information gathered by observing the mumrmiow
of .omrmam. We will avoid such complications here and just assume th
exists for whatever reason, _ e nae
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Our elaborated model provides some new insights into the world. If
the initial group of people standing exceeds o percent, then everyone
will rise; if it falls short of this value, then the standing ovation will
remain at its initial level. Agaia, we can tie the elements of the model to
a prediction about the world. By knowing the likelihood of various-sized
initial ovations, we can predict {given an a) the likelihood of everyone
else joining the ovation.

As clean and elegant as the mathematical model may be, it still leaves
us wanting some more illumination. For example, we know that real
ovations do not behave in the extreme way predicted by the model;
rather, they often exhibit gradual waves of participation and also form
noticeable spatial patterns across the auditorium. In the model’s current
form, too much space exists in between what it illuminates and what we
want to know about the real world.

To capture this additional illamination, we might extend the mathe-
matical model even further by using ideas from complex systems. This
approach may require us to model using a different substrate, most
likely indirect computation rather than direct mathematics, but for the
moment this choice is less important than the directions we wish to take
the modeling. The first elaboration we could undertake is to place each
person in a seat in the auditorium, rather than assurning that they attend
the theater on the head of a pin. Furthermore, we might want to assume
that people have connections to one another, that is, that people arrive
and sit with acquaintances (see figure 2.1).

Once we allow people to sit in a space and locate next to friends,
the driving forces of the mode! begin to change. For example, the initial
assumption of independent signals is now suspect. It is likely that people
seated in one part of the theater (or “side of the aisie”} receive a different
set of signals than others. Locations not only determine physical factors,
such as which other patrons someone can see, but also may reflect a
priori preferences for the performance that is about to begin. Similarly, in
an audience composed of friends and strangers, people may differentially
weight the signals sent by their friends, either because of peer pressure or
because the friendships were initially forged based on common traits.

Assuming that individuals now have locations and friends introduces
an important new source of heterogeneity. In the mathematical model,
the only heterogeneity came from the different draws of €. Now, even
“identical” individuals begin to behave in quite different ways, depending
on where, and with whom, they are seated.

2We once had a group of economics graduate students model the standing ovation. Not
one of them allowed the possibility of people attending the theater with acquaintances. We
hope this is more 4 reflection of how economists are trained than of how rhey live.
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Figure 2.1. Two views of modeling the standing ovation. In its simplest

form, the model requires that everyone shares the same seat in the auditorium
(left}, S..::m the more elaborate model {right} aliows space, friendship
connections, and physical factors like vision to play a vital role in the system
While the simple model might rely on tradisional rools like formal Bmﬁrmammnm
and statistics, the more elaborate model may require new techniques like
computational models using agent-based objects to be fully realized.

125. n.:EmEF.m of the model also becomes more complicated. In
the original model, we had an initial decision to stand, foliowed by
a second decision based on how many people stood initiaily. After this
mmwo.mn_ decision, the model reached an equilibrium where either the
original group remained standing or everyone was up on their feet.
The new model embodies a much more elaborate (and likely realistic)
&Sm.n:om. In general, it will not be the case thar the model atrains an
equilibrium after the first two rounds of updating. Typically, the first
round of standing will induce others to stand, and this mnmo:.m&: cause
others to react; in this way, the system will display cascades of behavior
that may not settle down anytime soon.

These two modeling approaches illuminate the world in very different
ways. .H: the first mode] either fewer than « percent stand or everyone
&ommw._: the second it is possible to have any percentage of people left
.mﬁmbnmEm. In the first model the outcome is determined after two periods;
in the second cascades of behavior wash over the auditorium and ormm
wnqmn@onmﬁm for many periods. In the first model everyone’s influence
is equal; in the second influence depends on friendships and even seat
location. Oddly, the people in the front have the most visual influence
on others yet also have the least visual information, whereas those in
the back with the most information have the least influence {think of the
former as celebrities and the latter as academics)
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The second model provides a number of new analytic possibilities. Do
performances that attract more groups lead to more o<mzon.w.u m‘oé does
changing the design of the theater by, say, adding balconies, influence
ovarions? If you want to start an ovation, where should you place your
shills? If people are seated based on their preferences for the performance,
say, left or right side of the aisle or more expensive seats up front, do you
see different patterns of ovations? . .

Although standing ovations per se are not the most pressing nm social
problems, they are related to a large class of important behaviors that
is tied 1o social contagion. In these worlds, people get tied to, and
are influenced by, other people. Thus, to understand the dynamics of
a disease epidemic, we need to know not only how the disease mmnmmam
when one person contacts another but also the patterns that determine
who contacts whom over time. Such contagion phenomena drive a
variety of important social processes, ranging from crime to academic
performance to involvement in terrorist organizations.

2.2 WraT's THE Buzz?

Heterogeneity is often a key driving force in social worlds. In the
Standing Ovation problem, the heterogeneity that arose from s&ﬂm
people sat and with whom they associated resulted in a model rich
in behavioral possibilities. If heterogeneity is a key feature of complex
systems, then traditional social science tools—with their mnﬁuwmmmm on
average behavior being representative of the whole—may be incomplete
or even misleading.

In many social scenarios, differences nicely cancel one another out.
For example, consider tracking the behavior of a swarm OM bees. mm you
observe any one bee in the swarm its behavior is pretty erratic, making an
exact prediction of that bee’s next location nearly impossible; however,
keep your eve on the center of the swarm—the average—and you can
detect a fairly predictable pattern. In such worlds, assuming behavior
embodied by a single representative bee who averages out the flight paths
of all of the bees within the swarm both simplifies and improves our
ability to predict the future.

2.2.1 Stay Cool

While differences can cancel out, making the average a good predictor
of the whole, this is not always the case. In complex systems we often
see differences inferacting with one another, resulting in behavior that
deviates remarkably from the average.
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To see why, we can return to our bees. Genetic diversity in bees
produces a collective benefit that plays a critical function in maintaining
hive temperature {Fischer, 2004}, For honey bees to reproduce and grow,
they must maintain the temperature of their hive in a fairly narrow range
via some unusual behavioral mechanisms. When the hive gets too cold,
bees huddle together, buzz their wings, and heat it up. When the hive gets
too hot, bees spread out, fan their wings, and cool things down.

Each individual bee’s temperature thresholds for huddling and fanning
are tied to a genetically linked trait. Thus, genetically similar bees all feel
a chill ar the same temperature and begin to huddle; similarly, they also
overheat at the same temperature and spread out and fan in response.

Hives that lack genetic diversity in this trait experience unusually
large fluctuations in internal temperatures. In these hives, when the
temperature passes the cold threshold, all the bees become too cold at
the same time and huddle rogether. This causes a rapid rise in temperature
and soon the hive overheats, causing all the bees to scatter in an
over ambitious artempt to bring down the temperature. Like a house
with a primitive thermostat, the hive experiences large fluctuations of
temperature as it continually over- and undershoors its ideals.

Hives with genetic diversity produce much more stable internal
temperatures. As the temperature drops, only a few bees react and
huddle together, slowly bringing up the temperature. If the temperature
continues to fall, a few more bees join into the mass to help out. A
similar effect happens when the hive begins to overheat. This moderate
and escalating response prevents wild swings in temperature. Thus, the
genetic diversity of the bees leads to relatively stable temperatures that
ultimately improve the health of the hive.

In this example, considering the average behavior of the bees is very
misleading. The hive that lacked genetic diversity—essentially a hive of
averages—behaves in a very different way than the diverse hive. Here,
average behavior leads to wide temperature fluctuations whereas hetero-
geneous behavior leads to stability. To understand this phenomenon, we
need to view the hive as a complex adaptive system and not as a collection
of individual bees whose differences cancel out one another.

2.2.2 Attack of the Killer Bees

We next wish to consider a model of bees attacking a threat to the
hive.® Some bees go through a maturation stage in which they guard the

3This is a simplified version of models of human rioting constructed by Grannoverer
(1978 and Lohmann (1993). Unlike the previous example, the direct applicability to bees
is more speculative on our parrt.
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entrances to the hive for a short period of time. When a threat is sensed,
the guard bees initiate a defensive response (from flight, to oriented flight,
to stinging) and also release chemical pheromones into the air that serve
to recruit other bees into the defense.

To model such behavior, assume that there are one hundred bees
numbered 1 through 100. We assume that each bee has a response
threshold, R, that gives the number of pheromones required to be in
the air before bee i joins the fray {and also releases its pheromone;.
Thus, a bee with R = 3 will join in once five other bees have done
so. Finally, we assume that when a threat to the hive first emerges,
R bees initiate the defensive response (to avoid some unnecessary
complications, let these bees be separate from the one hundred bees we
are watching). Note that defensive behavior is decentralized in a beehive:
it is initiated by the sentry activities of the individual guard bees and per-
petuated by each of the remaining bees based only on local pheromone
sensing.

We consider two cases. In the first case, we have a homogeneous hive
with R, = 50.5 for all i. In the second case, we allow for heterogeneity
and ler R; = i for all i. Thus, in this latter case each bee has a different
response threshold ranging from one to one hundred. Given these two
worlds, what will happen?

In the homogeneous case, we know that a full-scale attack occurs if
and only if R > 50. Thar is, if more than fifty bees are in the initial
wave, then all of the remaining one hundred will join in; otherwise the
remaining bees stay put. In the heterogeneous case, a fuil-scale attack
ensues for any R > 1. This latter result is easy 1o see, because once at
least one bee attacks, then the bee with threshold equal to one will join
the fray, and this will trigger the bee with the next highest threshold to
join in, and so on.

Again, notice how average behavior is misleading. The average thresh-
old of the heterogeneous hive is identical to that of the homogeneous
hive, yet the behaviors of the two hives could not be more different.
It is relatively difficult to ger the homogeneous hive to react, while the
heterogeneous one is on a hair trigger. Without explicitly incorporating
the diversity of thresholds, it is difficult to make any kind of accurate
prediction of how a given hive will behave.

2.2.3 Averaging Qut Average Bebavior

Note that the two systems we have explored, regulating temperature and
providing defense, have very differeat behaviors linked to heterogeneity.
In the temperature system, heterogeneity leads to stability. That is,
increased heterogeneiry improves the ability of the system to stabilize
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on a given temperature. In the defense system, however, heterogeneity
En_:nmm instability, with the system likely to experience wild mcnﬂwmaouw
In response to minute stimull. .

The difference of response berween the two systems is due to feedback
In %m. temperature system, heterogeneity introduces a negative mmmmvmnw.
loop mto the system: when one bee takes action, it makes the other bees
less likely to act. In the defense system, we have a positive feedback

loop: when one bee takes action, it makes the other bees more likely
to act.

2.3 ATare oF Two Cries

To explore further the modeling of complexity, we consider a simple
world composed of two rtowns, each of which has three citizens
mumﬁTmHEow.mu we assume that each town has to make a choice mvomﬁ.
an important public issue: whether to serve its citizens red or green chile
at its annual picnic. Citizens possess preferences over chile and strongly
prefer one type over the other® To make the analysis interesting m,a
assume that two of the citizens in each town prefer green to red mwmm
while the remaining person prefers the opposite. }

Hwom.mv mmmurv this scenario builds from an extensive literature in
L.:,.” social sciences on the allocation of public goods and services to
citizens (Samuelson, 1954; Tiebout, 1956). Public goods and services
flow across all members of society without exclusion or diminution once
.o_mmmma‘ Moreover, as we will see, the model also touches on even deeper
1ssues surrounding the decentralized sorting of agents within a complex
adaptive system. .

Before we can explore the behavior of the model, we need to define
two further elements. The first is how does a town, given a set of citizens
select whart chile to offer. The second is how do citizens react to ﬂrm
choices of the towns.

A town could use several mechanisms to decide what type of chile to
omm.h. It could employ a dictator, flip 2 coin, or implement some other
polirical process, such as majority rule. For the moment, we will assume
wrmm .mmnw town uses majority rule. Given this scenario, majority rule
implies that each town will always offer green chile {two votes 10 one!
Note that this outcome is not ideal, as one citizen in each town m?\m%m.
ends up consuming her less-preferred meal (see figure 2.2).

4P :

or those who enjoy both, New Mexic i i

. : 3 L2 3 an restaurants offer the option of ordering
chile “Chrisrmas.” v By
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Town A Town B

Figure 2.2. A symmetric Tiebout world. Here two towns each have three
citizens, two of whom prefer green to red chile. Both towns currently om.ﬂ. green
chile ar their annual picnic. Given this scenario, the system is at an equilibrium,
even though two of the citizens are not getting their favorite chile.

Now, suppose we give our citizens some mobility, that is, any citizen is
free to switch rowns if she so desires. We assume that citizens will move
only if the alternative town is offering a better meal. If each town is
serving green chile, no citizen has any incentive to refocate and everyone
stays put. .

Yet, something should be done. The current situation possesses a tragic
symmetry that prevents the red chile lovers from every realizing their
favored outcome since they are always the minority in either town. To
improve this situation, we must find a way to break the symmetry. ,

One way to break the symmetry is to introduce some B:aomﬁmm.m into
the system. For example, we could have one citizen Hmbnwo:&w decide to
move to the other town for whatever reason. If this citizen is a red chile
lover, then the town she vacated is left with two green chile lovers and
her new town now has two people who like red and two who like green
chile. Instead, if the citizen that relocates is a green chile lover, then the
vacated town s left with one of each tvpe, while the other town now has
three green and one red chile lover. Notice that regardless of who moves,
we are always left with one rown that is strongly green chile and one that
has equal numbers of each type. .

Given this situation, we would expect that eventually the town with a
split vote will offer red instead of green chile. Once this occurs, we now
have one town offering red and one offering green chile. The symmetry
is now broken, and the citizens in each town can immediately re-sort
themselves and self-select the town that perfectly meets their chile needs.
This leaves one town offering green chile populated by four green chile
lovers and one town offering red chile with two red chile fovers, and all

Complexity in Social Worlds « 19

Town A Town B

Figure 2.3. Broken symmetry in the Tiebout world. Once the two towns offer
different types of chile—perhaps due to noise in the political system—the
citizens will immediately re-sort themselyes. The System again attains an
equilibrium, though in this case each citizen now gets her favorite type of chile.
Note thart this new equilibrium is much more robust to minor perturbations
than the former one.

of the citizens would be worse off if they moved (see figure 2.3). This
latter configuration is quite stable to random moves of individuals, as a
single citizen moving will not alter the majority in either town,

An alternative way to break the symmetry is to alter slightly the
behavioral rules that control our citizens. Suppose that agents are willing
to relocate if they can ar least maintain their level of happiness (rather
than improve it). Such a change in behavior allows for what biologists
call neutral mutations, that is, movements in the underlying structure that
do not directly impact outcomes. Even though neutral mutations do not
have an immediate effect, they can lead to better outcomes eventuaily by
changing what is possible. In the initial case, any of the citizens is willing
to move since both towns offer the same type of chile. Regardless of
who moves, one town is always left with a split vote, and the symmetry
breaking we saw previously is again possible.

The system demonstrates some key features of complex adaptive
social systems. First, we have a web of connections that, in this case,
sesults from citizens linking to one another by being resident in a given
town. Second, we see change induced by choices made by all of the
different types of agents in the system. Citizens must decide where to
move, and towns must decide what type of chile to offer. Moreover,
the system as a whole must “decide” how to sort the citizens among
the rowns, although this latter “choice” is not a conscious calculation
of the system per se, but rather an implicit computation resulting from
the decentralized choices made by each citizen and town. The model also
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demonstrates how a social system can get locked into an inferior outcome
and how, with the introduction of noise or different behavioral rules,
it can break out of such outcomes and reconfigure iself into a better
arrangement.

The model also incorporates other key themes in complex adaptive
social systems: equilibria, dynamics, adaptation, and the power of
decentralized interactions to organize a system. The system has multiple
equilibria, some of which are inferior to others. The key dynamics that
occur in the model are the choice dynamics of each town induced by
the voting system and the movement dynamics of each citizen implied
by her preferences and each town’s offerings. Note that these dynamics
imply that towns adapt to citizens, while citizens also adapt to towns.
Finally, we see how the system’s dynamics result in local, decentralized
behaviors that ultimately organize the citizens so that their preferences
align with other citizens and each town’s offerings align with its
residents.

2.3.1 Adding Complexiry

While our model gives us some useful intuitions and insights, it is also
{quite intentionally) very limited. Like all good models, it was designed
to be just sufficient to tell a story that could be understood easily yet
have enough substance to provide some insights into broader issues.
Moving beyond the limitations of this model is going to require some
compromises—narmely, if we want to expand the potential for insights,
we will likely need to complicate the model and, perhaps, muddy the
analytic waters.

For exampie, suppose we wish to explore more fully Tiebout’s (1956}
conceprt of “voring with your feet.” That is, can we characterize better the
ability of social systems to sort citizens dynamically among towns? The
simplifications in the preceding model were rather drastic; we had two
towns, six citizens, a single issue (choice of chile), and a single mechanism
to determine what each town offered (majority rule). If we wish to go
bevond any of these constraints, we will quickly start to run into trouble
in pursuing the thought experiment framework used previously.

In economics, formal modeling usually proceeds by developing math-
ematical models derived from first principles. This approach, when well
practiced, results in very clean and stark models that yield key insights.
Unfortunately, while such a framework imposes a useful discipline on
the modeling, it also can be quite limiting. The formal mathemarical
approach works best for static, homogeneous, equilibrating worlds. Even
in our very simple example, we are beginning to violate these desiderata.
Thus, if we want to investigate richer, more dynamic worlds, we need
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to pursue other modeling approaches. The trade-off, of course, 1s that
we must weigh the potential to generate new insights against the cost of
having less exacting analytics.

One promising alternative approach is the development of
computation-based models. In the Tiebout system, through computation
we can allow multiple towns and citizens, as well as more elaborate
preference and choice mechanisms. Thus, we can consider a world in
which each rown must make binary choices over multiple issues, such
as whether to, say, serve red or green chile at the annual picnic, allow
smoking in public places, and set taxes either high or low. Once we
admit multiple issues, our citizens will need to have more complicated
preference structures to account for the more elaborate set of choices.
This will imply that, instead of just two types of citizens, we now have a
much more heterogeneous population. Finally, instead of using majority
rule as the sole means by which a town chooses its offerings, we can
admit a variety of other possible social choice mechanisms. For example,
towns might use a form of democratic referenda where, like simple
majority rule, citizens get to vote on each issue and the majority wins; or
perhaps the towns could rely on political parties that develop platforms
{positions on each possible choice} and then vie for the votes of the
populace.

Rather than fully pursuing the detailed version of the model we
just outlined {inferested readers should see Kollman, Miller, and Page,
1997), here we provide just an overview. Using computation, we can
explore a world with multiple issues, citizens, towns, choices, and choice
mechanisms. For example, consider a model where each town must make
binary decisions across eleven issues. Each citizen has a preference for
ecach issue that takes the form of a {randomly drawn) weight that is
summed across all of the choices in a town’s platform to determine the
citizen’s overall happiness. Of particular interest at the moment is the
effectiveness of different public choice mechanisms in allocating citizens
to towns and towns to piatforms.

We will allow towns to use a variety of choice mechanisms to
determine what they will offer, At one extreme we can employ democratic
referenda (essentially majority rule on an issue-by-issue basis), while at
the other we will consider a party-based political processes whereby
political parties propose platforms and then compete with one another
for votes. In this latter mechanism, we can consider worlds with two
or more parties, either where the winning party takes all in direct
competition (that is, the winning party’s platform is what the town offers)
or where, in a system of proportional representation, the final platform
offered by the town is a blend, weighted by votes, of each individual
party’s platform.
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Again, we impose a simple dynamic on the system: the citizens in
a town, mediated by the choice mechanism, determine what the town
will offer across the eleven issues and, once that is determined, citizens
look around and move to their favorite town based on their own
preferences and each town’s current offerings. We iterate this process
multiple times and ultumartely investigate the final match of citizens to
towns and towns to issues. For the moment, we judge each mecha-
nism only by its effectiveness at maximizing the overall happiness of
the citizens after a fixed amount of time. Thus, a good ocutcome will have
citizens with similar preferences living in the same town, and that town
offering a platform thar aligns well with the preferences of its, relatively
homogeneous, residents.

To get our bearings, first consider the case of a world with only a
single town. In such a world the dynamic implied by citizens moving
from town to town is nullified, and the only dynamic element of the
model is that arising from the town altering its offerings via the choice
mechanism. Thus, the best outcome will depend on the ability of the
choice mechanism to come up with a platform that closely matches
the preferences of the population. We find that, under these conditions,
democratic referenda lead to the best outcome, followed by rwo political
parties competing under direct competition, then multiple parties with
proportional representation, and finally more than two parties using
direct competition. Under democratic referenda, the system immediately
locks into the median position of the voters on each issue; under the
other mechanisms, party competition can resuit in the town’ platform
changing from petiod to period and not necessarily achieving the median
on any one issue. Under the preference structure of our model, the medjan
voter position on each issue will typically maximize the overall welfare of
a fixed group of citizens confined to g single fown, Therefore, democratic
referenda are the best mechanisms for maximizing social welfare in a
world consisting of only a single town.

Oddly, when we allow additional towns into the system, democratic
referenda no longer lead to the highest social welfare. In fact, the
effectiveness of the different choice mechanisms is completely reversed,
and democratic referenda become the worst possible institution rather
than the best. (See figure 2.4.)

Why does this happen? Fortunately, computational models are quite
amenable to exploring such questions; in essence, we have a laboratory
on the deskrop and can systematically propose, test, and eliminate key
hypotheses to understand better the cutcomes we are observing.

To develop some needed intuition, consider the following. If we are
interested In maximizing the overall happiness of our citizens with
multiple towns, we must achieve two ends. First, we need to sort
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Figure 2.4. Results of a computational Tiebout model. As we increase the
number of towns in the system, the effectiveness of the different choice
mechanisms in achieving high social welfare completely reverses.

the citizens among the available towns so that citizens with similar
preferences reside in the same town. Without such a sorting, the social
welfare generated by each town will be compromised given the diversity
of wants, Second, each town must choose across the issues so as to
maximize the happiness of its residents. As noted, democratic referenda
are very effective at deriving a stable platform of choices that maximizes
happiness for a given town. Given this observasion, the failure of
democratic referenda with multiple towns must be related to their
nability to sort adequately the citizens among the towns.

A deeper investigation into the dynamics of the system confirms that
the mechanisms other than democratic referenda result in far more
initial movement of the citizens among the towns. Democratic referenda
tend to stabilize the system quickly, freezing the citizens and platforms
in place after only a few iterations. That is, after only a few rounds
each town is offering a fixed platform, and no citizen wants to move.
The other mechanisms are much more dynamic, in the sense that the
platforms of each town keep changing during the early periods and
the citizens tend to migrate much more often. Eventually, even these
latter systems settle down to a state with little platform change and few
migrations.

Earlier we saw how noise in the system allows it to break out
of inferior sortings and to lock into superior ones. Of course, noise
alone is not sufficient to guarantee a quality sorting of the citizens—
to achieve high levels of social welfare, you need the noise to result in
relatively homogeneous groups of citizens in each town and each rown
implementing platforms that approach something akin to the median
issue positions across the local vorers.

In fact, the choice mechanisms that work best in our more complicated
model have a subtle, but key, property. These mechanisms tend to
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introduce noise into the system when the local citizens® preferences are
heterogeneous and to reduce this noise as the citizens become more
homogeneous. Thus, if the citizens in a given town have very different
oreferences from one another, the more successful mechanisms will
tend to induce more sorting. As the local citizens become more and
more similar, these same mechanisms tend to converge on something
approaching the median position on each issue. The notion that good
political mechanisms should have such an inherent design is somewhat
intuitive: if everyone in a district wants the same thing, the mechanism
should deliver it; if, on the other hand, there is a diversity of wants, then
the political process should jump around among the various options.

This “natural” annealing process turns out to be a very effective
way to promote the decentralized sorting of citizens among towns. To
achieve the highest social welfare, we need homogeneous collections
of citizens in each town receiving roughly the median policy of the
local residents. When the overall sorfing of the system is poor, that
is, when the mix of citizens in each town tends to be heterogeneous
rather than homogeneous, then we should introduce a lot of noise inte
the platforms. Such noise will induce some citizens to migrate, and this
migration will often cascade across other towns and result in a fairly
large-scale resorting of the citizens. However, as the citizens become
better sorted, that is, as each town becomes more homogeneous, the
choice mechanisms should “cool” {anneal} the system by stabilizing on
platforms that closely match the relatively homogeneous preferences of
each town’s citizens.

The notion of annealing to improve the structure of decentralized
systems was first recognized a few thousand years ago 1 early metal-
working. Heating metal tends to disrupt the alignment of {add noise
to) the individual atoms contained in a metal; then, by slowly cooling
the metal, the atoms can align better with one another, resulting in a
more coherent structure. Kirkpatrick, Gelatt, and Vecchi (1983), based
on some ideas from Metropolis et al. (1953), suggested that “simulated”
annealing could be used as an effective nonlinear optimization technique.
Thus, the Tiebout model shows how different institutions (here, public
choice mechanisms) can become natural annealing devices that ultimately
result in a decentralized complex adaptive social system seeking out
global social optima.

By pursuing the more elaborate computational model, we achieved a
number of useful ends. First, we were able to investigate some 1mportant
new questions, such as the impact of citizen heterogeneiry, multiple
towns, and differing choice mechanisms on the ability of a system to
achieve high social welfare. Second, the more efaborate model provided
some new insights into how such systems behave, the most important
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being the idea that well-structured noise can jolt a system out of inferior
equilibria and lead it toward superior ones, and that choice mechanisms
can be designed to introduce such noise in a decentralized way. This
intuition is contrary to our usua! way of thinking about such problems.
Noise is usually considered to be a disruptive force in social systems,
resulsing in perturbarions away from desirable equilibria rather than a
means by which to attain them.

The complex-systems approach aiso allows us to explore the system’s
robustness. The system autonomously responds to all kinds of changes.
We can randomly change the preference profiles for some of the cirizens,
inrroduce or remove issues, and so on. In each case, the system will
adapt to these changes by presenting new platforms and inducing new
migrations. Depending on the rate of change, we may see the system
slowly moving through a sequence of equilibria or find ourselves with a
world constantly in flux.

Although we have focused our discussion on a political system allo-
cating public goods, the basic ideas embodied in the model are much
broader. Decentralized sorting arises across a variety of domains. For
example, workers seek jobs, traders match with trading partners, individ-
uals form social groups and clubs, and industries sort out standards and
geographic locations. All of these scenarios couid be cast as decentralized
sorting problems similar to the one just discussed. Moreover, we coutd
use the ideas developed here to formulate new kinds of decentralized
sorting algorithms that could be used to, say, sort computer users across
resources (like servers) or on-line communities (like bulletin boards or
tagging).

The Tiebout world we have explored is a nice example of a much
broader quest. There is nothing that is unique about the Tiebout world
in terms of its complexity. Like most social systems, it displays some
dynamics, heterogeneity, and agent interactions that, even in vastly
simplified models, can easily introduce complexity. Even a little bit
of complexity implies that the conventional tools we often employ to
investigate the world will be limited in their ability to yield nsights and
prescriptions. We are not claiming that these more conventional tools
are useless; indeed, they are an important complement in any quest
to understand the world.* The computational approach pursued here
provided a number of new directions and msights that both enhanced,
and was enhanced by, more conventional techniques.

5In the example presented, the investigation of the system first began with the more
elaborase compurational model. Based on that experience, we were able to develop the
thought experiment with which we opened this section.
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2.4 NEw DIRECTIONS

The notion that real social systems often result in complex worlds is
nothing new. More than two hundred years ago Adam Smith described
2 world where the self-interested social behavior of butchers, brewers,
bakers, and the like resulted in the emergence of a well-defined order.
While social science has been able to develop tools that can help us
decipher some parts of this system, we have yet to understand fully
the inner workings of the world around us. Unfortunately, we are at
the mercy of a world characterized by change and connections, and thus
our ability to make sense of our world is often undermined by the same
characteristics that make it so fascinating and important.

The application of computational models to the understanding of
complex adaptive social systems opens up new frontiers for exploration.
The usual bounds imposed by our typical tools, such as a need to keep
the entire model mathemarically tractable, are easily surmounted using
computational modeling, and we can let our imagination and interests
drive our work rather than our traditional tools. Computational models
allow us to consider rich environments with greater fidelity than existing
techniques permit, ultimately enlarging the set of questions that we can
productively explore. They allow us to keep a broad perspective on the
multiple, interconnecting factors that are needed to understand social life
fully. Finally, they give us a way to grow wozlds from the ground up and,
in so doing, provide a viable means by which to explore the origins of
social worlds.

As we move into new territory, new insights begin to spill forth.
Somerimes these insights are strong enough to stand on their own; at
other times, they provide enough of a purchase on the problem that we
can employ time-tested older techniques to help us verify and illuminate
the newly acquired insights. On occasion, of course, computational
models leave us with a jumbled mess that may be of no help whatsoever,
though, with apologies to Tennyson, 'tis better to have explored and lost
than never to have explored at all.

Sacial science has failed to answer, or simply ignored, some important
questions. Sometimes important questions falf through the cracks, either
because they are considered to be in the domain of other fields (which
may or may not be true) or because they lie on the boundaries between
two fields and subsequently get lost in both. More often than not, though,
questions are just too hard and therefore either ger ignored or (via
some convoluted reasoning} are considered unimportant. The difficulry
of answering any particular scientific question is often tied to the tools
we have at hand. A given set of tools quickly sorts problems into those

Complexity in Social Worlds « 27

we could possibly answer and those we perceive as too difficult to ever
sort out. As tools change, so does the set of available questions.

Throughout this book, we pursue the exploration of complex systems
using a variety of tools. We often emphasize the use of computational
models as a primary means for exploring these worlds for a number
of reasons. First, such tools are naturally suited to these problems, as
they easily embrace systems characterized vw\m_w:manmu hetrerogeneity,
and Interacting components/Second, these tools are relatively new to the
practice of social science, so we take this as an opportunity to help clarify
their nature, to avoid misunderstandings, and generally to advance their
use. Finally, given various trends in terms of the speed and ease of use
of computation and diminishing returns with other tools, we feel that
compuration will become a predominant means by which to explore the
world, and ultimately it will become 2 halimark of twenty-first-century
science.

2.5 ComrLEx Social Worrps REpux

We see complicated social worlds all around us. That being said, is
there something more to this complication? In traditional social science,
the usual proposition is that by reducing complicated systems to their
constituent parts, and fully understanding each part, we will then be
able to understand the world. While it sounds obvious, is this really
correct? Is it the case that understanding the parts of the world will
give us insight into the whole? If parts are reaily independent from
one another, then even when we aggregate them we should be able to
predict and understand such “complicated” systems. As the parts begin
to connect with one another and interact more, however, the scientific
underpinnings of this approach begin to fail, and we move from the realm
.om complication to complexity, and reduction no longer gives us insight
Ewognmﬁnznﬁo?m

2.5.1 Questioning Complexity

Thus, a very basic question we must consider is how complex, versus
complicated, are social worlds. We suspect that the types of connections
and interactions inherent in social agents often result in a complex
system. Agents in social systems typically interact in highly nonfinear
ways. Of course, there are examples, such as when people call one
another during the course of a normal day, where agent behavior aggre-
gates in ways that are easily described via simply statistical processes.
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Nonetheless, a lot of social behavior, especially with adaptive agents,
generates much more complex patterns of interaction. Sometimes this
is an inevitable feature of the nature of social agents as they actively
seek connections with one another and alter their hehavior in ways that
imply couplings among previously disparate parts of the system. Other
times, this is a consequence of the goal-oriented behavior of social agents.
Like bees regulating the temperature of the hive, we turn away from
crowded restaurants and highways, smoothing demand. We exploit the
profit opportunities arising from patterns generated by a stock market
and, in so doing, dissipate their very existence. Like bees defending the
hive, we respond to signals in the media and market, creating booms,
busts, and fads.

If social worlds are truly complex, then we might need to recast our
various attempts at understanding, predicting, and manipulating their
behavior. In some cases, this recasting may require a radical revision of
che various approaches that we traditionally employ to meet these ends.
At the very least, we need to find ways to separate easily complex systems
from merely complicated ones. Can simple tests determine a System’s
complexity? We would like ro understand what features of a system move
it from simpie to complex or vice versa. If we uitimately want to control
such systems, we either need to eliminate such forces or embrace them by
productively shaping the complexity of a system to achieve our desired
ends. n

Another important question is how robust are social systems. Take a
typical organization, whether it be a local bar or a multinational corpo-
cation. More often than not, the essential culture of that organization
retains a remarkable amount of consistency over long periods of time,
even though the underlying cast of characters is constantly changing and
new outside forces are continually introduced. We see a similar effect
in the human body: typical cells are replaced on scales of months, yet
individuals rerain a very consistent and coherent form across decades.
Despite a wide variety of both internal and external forces, somehow
the decentralized system conerolling the trillions of ever changing cells in
your body allows you to be easily recognized by someone you have not
seen in twenty vears. What is it that allows these systems to sustain such
productive, aggregate patterns through so much change?

" Our modeling of social agents tends toward extremes: we either
consider worlds composed of remarkably prescient and skilled agents
or worlds populated by morons. Yet, we know that real agents exist
somewhere in between these two nxﬂmaow How can we best explore
. this middle ground? A key issue in exploring this new territory is figuring
" our the commonalities among adaptive agents. While it is easy o specify
behavior at the extremes, as we move into the middle ground, we are
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suddenly surrounded by a vast zoo of curious adaptive creatures. If we
are stuck having to study every creature individually, it will be difficult
to make much progress, so our underiying hope is that we can find some
way to distill this marvelous collection of behaviors down to _.cmmxm few
prototypical ommm.u..ndmom this is done, we can begin to make ﬁmomwm& on
a science of adaptive behaviors.

[ We know that adaptive agents alter the world in which they live. What,
we-do not know is how much agent sophistication is required to do so}
effectively and whar other conditions are necessary for this to happen.
.Hd general, the link between agent sophistication and system outcome
is moom:\ understood. Theoretical work in economics suggests that
optimizing agents out for their own benefit can, without intention, lead
a market system toward efficiency under the right conditions, Moreover,
experimental and computational work suggests that such outcomes are
possible even with nonoptimizing agents. Ultimately, it would be nice
to have a full characterization of the interplay between adapration and
optimality in social systems.

Another realm where we have a limited enderstanding is the role
of rmﬁmaom.m:m#% in systems. We know that in, say, ecological systems
homogeneity can be problematic. For example, using a few genertic lines
of corn maximizes short-term output but subjects the entire crop to a high
lmr. of destruction if an appropriate disease vector arises. Homogeneity in
.woﬂm_ systems may have similar effects. A homogeneous group of agents
in, say, a market might result in a well-functioning institution most of
the time, but leave the possibility that these behaviors could synchronize
in such a way that on occasion the market will crash. By introducing an

secology of heterogeneous traders, such fluctuations might be mitigated.

{ Perhaps heterogeneity is an important means by which o improve the
robustness of systems, ff so, does this work via complexifying the system
or via some other mechanism?

The idea of social niche construction is also important. Agents, by
their activities, can often alter the world they inhabit and, by so aownwu
.mo:m new niches. For example, the development of membranes early
in the history of life on Earth allowed various biclogical components
o bind rogether and isolate themselves from the external world. This
?n@mamnﬂm:% altered their local environment creating new opportunities
moh.. interacting with the world. Similarly, the formation of merchant
guilds, corporations, and political organizations fundamentally altered
both the internal world faced by agents and the external world in which
these new entities operated. We would like to know when and how agents
construct such niches.

The role of control on social worlds is also of interest.i The ability to

direct the global behavior of a system via local control wmnﬁmhrmwm one
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5,
of the most impressive, yet mysterious, features of many social systems.
In the natural world, tens of thousands of swarm-raiding army ants
can form cohesive fronts fifty feet across and six feet deep that can
sweep through the forest for prey. This entire operation is controlled via
locally deposited chemical signals. Ata grander scale, a vast decentralized
systems of human markets of all types orchestrate the activities of
billions of individuals across the span of continents and centuries. Fully
understanding how such decentralized systems can so effectively orgdnize
global behavior is an enduring mystery of social science.; We do have
some hints about how this can happen. For example, adding noise to
the system (as we saw in our Tiebout model) may actually enhance
the ability of a system to find superior outcomes. We also know that
some simple heuristics that arise in some CONtexts, such as the notion
chat in a market new offers must better existing ones, result in powerful
driving forces that enhance the ability of the system to form useful global
patterns.

Every social agent receives informartion about the world, processes it,
and acts. For example, in our Tiebout model, the behavior of the citizens
was very straightforward (get information about the offerings of the
various towns, process this via your preferences, and act by moving to
your favorite town), while that of each town was a bit more eiaborate
{get information about the preferences of the citizens across the issues,
process this via either exact or adaptive mechanisms to develop a new
platform, and act by implementing this platform).

Traditional economic modeling tends to have a fairly narrow view
of the issues that arise in acquiring information, processing it, and
acting. In these models, agents tend to have access to all available
information, process it with good fidelity and exacting logic directed
roward optimization, and act accordingly. Where traditional economics
gains its power is that these restricrions make for relatively easily
modeling across a broad spectrum of social activity. Notwithstanding
the apparent success of this approach in some domains, one wonders
whether such a restricted view of these three elements is appropriate.
While clearly these restrictions give us leverage from which to gencrate
insights across a variety of social realms, we also know that in many
cases the core tenets driving the approach are misplaced (though it 1s
still an open issue whether this matters in the end). For example, the
recent wave of work in behavioral economics is based on the notion that
the processing of information by humans may take place in ways that
dramatically diverge from the traditional view.

Much of the work we discuss throughout this book relaxes the
traditional assumptions about information acquisition, processing, and
acting. We want to consider models in which information is selectively
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acquired across restricted channels of communication. We want to look
at agents that process information via adaptive mechanisms or restricted
Hiww rather than exacting logic. We want to explore models in which
actions are often limited and localized. How do all of these factors

Qw_.uo&\ .moﬁm_ complexity and what does this mean for the practice of
sociai science?



CHAPTER 4

On Emergence

He intends only his own gain, and he is in this, as in many
other cases, led by an invisible hand o promote an end which
was no part of his intention.

—Adam Smith, Wealth of Nations

Any sufficiently advanced technology is indistinguishable
from magic.
—Arthur C. Clarke, Profiles of the Future

MucCH OF THE FoCUS of complex systems is on how systems of interact-
ing agents can lead ro emergent phenomena. Unfortunately, emergence
is one of those complex systems ideas that exists in a well-trodden,
bur relatively untracked, bog of discussion. The usual notion put forth
underlying emergence is that individual, localized behavior aggregates
into global behavior that is, in some sense, disconnected from its origins.
Such a disconnection implies that, within fimits, the details of the local
behavior do not matter ro the aggregate outcome. Clearly such notions
are important when considering the decentralized systems that are key to
the study of complex systems. Here we discuss emergence from both an
intuitive and a theorerical perspective.

The notion of emergence has deep intuitive appeal. Consider for the
moment standing up close to a pixelated picture (see figure 4.1}." While
each individual pixel can be easily understood in terms of its shape, color,
hue, and other properties, it is typically impossible ro figure out the entire
image by simply scanning across the pixels at close range. As the observer
moves back, there is some point at which the overall image begins to
resolve, and the pixels become indistinguishable. Once the image has
resolved, we can typically make many possible aiterations to individual
pixels and still not impact the overall image. Indeed, depending on the
image, certain types of global pixel properties, such as color, may not
even be be needed to have a good sense of the fnal image.

We may sce emergence at many levels. For example, instead of
having each pixel composed of a single solid color, we could replace it
with a tiny picture whose overall properties can approximate the key

1For rhe more romantic among you, assume z stained glass window.
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Figure 4.1. Emergence from a mosaic. While the properties of each tile are easy
to understand at close range, the true nature of the full image is impossible to
comprehend from such information. It is only when you view the mosaic from
far away thar emergence aliows the entire image 10 become viable.

visual artributes of the previous pixel.? Of course, each of these tiny
photographs, each emerging from its own set of pixels, could seand by
itself. Thus, there is the possibility of multiple layers of emergence, where
pictures become pixels that become pictures that become pixels and so
on. This may lead us to a “Horton-Hears-A-Who” theory of the universe,
in which the world is composed of stacked layers of emergence.

The notion of emergence at many levels is an important one, as each
level of emergence can serve as a convenient point at which to dissect the
larger system and attempt to understand some of its secrers. Indeed, the
boundaries of modern science rely on this property—for example, physics
resolves into chemistry, which resolves into biolegy, which resolves into
psychology, which resolves into economics, and so on. Each new science
is able to exploit the emergence that is attained by the previous level.

While this metaphor of emergence is very appealing, it leaves open
the question of how it should fit into scientific discourse. Part of the
innate appeal of emergence is the surprise it engenders on the part of
the observer. Many of our most profound experiences of emergence
come from those systems in which the local behavior seems so entirely
disconnected from the resulting aggregate as to have arisen by magic,
echoing Clarke’s observation about advanced technology. Examples of
such dramatic disconnects include photomosaic pictures, the order and
persistence of beehives and foraging ant colosnies through simple sets of
localized signals, and the stabilicy of a market price generated by the
often chaotic and heterogeneous efforts of traders.

3 . . - . PR
“The technique of phoromosaic pictures exploits this idea.
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Alas, surprise and ignorance are closely related. It could be that
emergent behavior is simply reflective of scientific ignorance rather than
some deeper underlying phenomenon. What may start out as a mystical
emergent phenomenon, such as planetary motion prior to Kepler, may
tura out to be something rather simple-—in the case of Kepler, jusf an
ellipse. If all such scientific conundrums can be easily resolved, then
perhaps it is true that all of our world is just physics. Nonetheless,
whether our fascination with emergent phenomena is driven by ignorance
or a more profound scientific mystery matters little. Profound scientific
mysteries often get resolved in such a way that our prior ignorance
becomes apparent, yet it is the ignorance that drives the quest for
understanding.

4.1 A THEORY OF EMERGENCE

To move forward on the scientific exploration of emergence, it is useful
to consider what types of theorertical ideas are possible in this area. As
we have discussed, & Bwnmm:nm is a phenomenon whereby well-formulated
_aggregate behavior arises from localized, individual mumrmﬁom.. :Moreover,
"“such aggregate patterns should be immune to reasonable variations in the
‘individual behavior. [deally, what we would like to develop are theorems
about such phenomena, and, fortunately, at least one such theorem has
existed since the early 1700s.

The theorem, the Law of Large Numbers (and its various offshoots,
including the Central Limit Theorem), was developed by statisticians
over the past few hundred years. It is of interest because it provides some
relatively general conditions under which a certain type of aggregate
behavior can emerge from the stochastic, microlevel actions of individual
agents. Suppose that each individual agent’s behavior is summarized
by a random variable, X. Furthermore, assume that these variables are
mutually independent, have a common distribution, and a mean equal
to . According to the Law of Large Numbers, the probability that the
mean will differ from u by less than some arbitrary amount tends to one
as we increase the number of agents in the system.

Thus, in such systems there is a stable, aggregate property (here
the expected value of the common distribution) that emerges from
aggregating the activities of the agents. Moreover, this aggregate property
is robust to many underlying assumptions about the agents. In the
foregoing case of the Law of Large Numbers, the only restriction is
that the common disiribution has mean p; other than that, we can vary
any of its other characteristics and still maintain the identical aggregate
behavior.
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Figure 4.2. Central Limit Theorem. Notwithstanding the form of the initial
distribution underlying the random process, the distribution of the mean of the
variables generated by this process converges to a Normal distribution as we
take larger and larger samples. In the top panel we start with a Uniform
distribution, while in the bottom one we begin with a V-shaped distribution.
In either case, a Normal distribution “emerges” as the sample size increases.
Thus, the macrobehavior resulting from the aggregation of a remarkably
diverse set of potential microbehaviors results in a very robust and predictable
outcome—a hallmark of emergence.

The Central Limit Theorem provides another example of such a result
{see figure 4.2). If we add the assumption that the variance of the
common distribution is finite, then the distribution of the average (our
aggregate property) will converge to a well-known “normal” form. The
remarkable implication of this theorem is that, for an amazing variety of
underlying agent behaviors, the global behavior that emerges is described
by a simply specified, common form.

As Coates (1956} points out, without these laws, much of the behavior
of the social worlds we live in would fall apart. Various activities, ranging
from driving on the highway to enjoying the outdoors, would either be
excessively crowded or notably desolate at the strangest times, stores and
restauranes would run out of the oddest things, life insurance companies
and telephone systems would fail, and so on.

The emergence theorems provide useful descriptions of a certain type
of complexity that Weaver (1958), in a deeply prescient article, called
disorganized complexity. The Law of Large Numbers works because as
we add more and more independent agents to the world, the vagaries
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{ S
ofithe stochastic elements, quite literally, average out.;With only a

few “agents, these stochastic elements make it impossible to predict
with any certainty the aggregate behavior because individual variation
overwhelms any potential predictability, but as we increase the number
of agents involved in the world, individual variations begin to cancel one
another out, and systemwide predictions become ﬁom.mwzm.\w

T"The key feature of disorganized complexity is thar the interactions

%Fthe local entities tend to smooth each other oug, In the case of the
Law of Large Numbers, an unusually high value for one random value
is compensated for by an unusually low value of another. Thus, while
it is difficult to predict the point at which, say, a particular rain drop
meandering down a roof will fall into the gurter, it is easy to predict
the activity at any point of the gutter during a rainstorm, as the various
meanderings of the drops tend to disrupt one another sufficiently as they
flow down the roof so as to spread out the water in a predictable way.
Similarly, while predicting the motion of a planet surrounded by a few
neighbors is difficult, it is easy to calculate its motion when it is among a
sea of other planets, as the various gravitational forces that come into
play begin to cancel one another out, and soon only the mean force
becomes important. Other phenomena, ranging from population genetics
to physical properties like temperature and pressure, also fall within the
realm of disorganized complexity.

Thus, in cases of disorganized complexity, it should be easy to derive

only one part of our world.

4.2 Beyonp DisoRGaNIZED COMPLEXITY

Consider a picture of a face that is composed of black and white pixels. In
such a picture, the pixels have relationships to one another that are quite
important if we are to recognize the face. Some changes to the picture
will not cause us to “lose” the face; for example, having a few of the
pixels randomly change color, or even allowing some neighboring pixels
to switch places, will preserve the “face.” Even some radical changes may
not impact our ability to perceive the face, such as altering the color of
related pixels (think Warhol) or just showing the important edges of the
photograph (see figure 4.3). Moreover, if we are careful, we may be able
to “capture” the image with just a few carefully drawn lines, as is done
in caricature drawings.

Nonetheless, while we can make some slight changes to the pixels
{or even some carefully designed radical changes) and still maintain the
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Figure 4.3. Beyond disorganized complexity. The essence of the phorograph
remains robust to a variery of radical changes. Al! of these transformations keep
intact the relarionship of key parts of the original photograph {feft).

image, doing anything more is likely to destroy the image. As we start to
impact more and more pixels {by either randomly altering their colors or
allowing neighbors to switch places), we quickly descend into the realm
of disorganized complexity. In such a world, the photograph quickly
resembles the white noise we see on the television (at least prior to
the advent of late-night infomercials) when stations end their broadcast
day. While it would be possible to construct the usual disorganized-
complexity emergence theorems about, say, the average tone of the
picture or the likelihood of an eyelike shape arising somewhere in
the photograph, such theorems would fail to capture the essence of
the problem of understanding how a decentralized set of pixels can
emerge into a familiar face.

Thus, disorganized complexity, while often useful, leaves out a lot
of interesting complexity-related phenomena. Disorganized-complexity
emergence theorems can be used to calculate the vanishingly small prob-
ability that a room full of apes randomly banging away at typewriters
will come up with Hamlet. Of course, a close relative of an ape did write
Hamlet, but obviously not by randomly placing words to parchmeant and

/

hoping for the best. Similarly, Ermm%&monmmammaéoaﬁmﬁg theorems,
can be used to predict the life-span of a human body of a beehive
composed of individual m@nﬁmm {cells or bees, respectively), %ﬂrm% do not
provide any insight int roé%rm various communication and behavioral
pathways among the individnal agents are able to aggregate into these
larger-scale organizations that survive and have behaviors on scales that
are completely different than their constituent parts.

Explorations of complex systems have begun to identify the emergent
properties of interacting agents—for want of a bertter term, orgamized
complexity. We often see unanticipated statistical regularities emerging in
complex systems. These regularities go beyond the usual bounds covered
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by Central Limit Theorems and such. In chapter 9 we explore a model of
sand piles in which we randomly drop grains of sand onto a table. A pile
forms as the sand falls, and eventually grains begin to run off the edges
of the table in avalanches of various sizes. The distribution of avalanche
sizes follows a power law that implies behavior that is quite different
from that arising from a normal distribution.

Agent intention can also alter the patterns that emerge in complex
systems. In the case of the Sand Pile model, if we give the falling grains
of sand a bit of control on where they land and some desires {like
maximizing the size of the resulting avalanche), the system is no fonger
governed by a power law and instead enters a bizarre periodic cycle. As
we give agents even more strategic ability, we often see elaborate dances
of strategies, with good and bad epochs, cycles, and crashes.

In systems characterized by the Central Limit Theorem, interactions
cancel one another out and result in a smooth bell curve. In complex
systems, interactions reinforce one another and result in behavior that
is very different from the norm.” The complex phenomena that arise in
physical systems (like earthquakes, floods, and fires) and social ones {like
stock market crashes, riots, and traffic jams} are decidedly not “normal,”
nor are the patterns that emerge as we see birds flock, fish school, and
pedestrians follow sidewalks demarcated by invisible traffic lanes.

4.2.1 Feedback and Qrganized Complexity

Mhen interactions are not independent, feedback can enter the system.

Feedback fundamentally alters the dynamics of a system. In a system with
negative feedback, changes get quickly absorbed and the system gains
stability. With positive feedback, changes get amplified leading to
instability.

For example, consider a world in which we have one hundred
consumers, each of whom must choose to shop at one of two identical
grocery stores. In a world ruled by the Central Limit Theorem, a con-
sumer would choose a store with probability one-half. Thus, each store
could expect to see fifty customers on average, though the actual number
that showed up would be subject to random variation. In fact, given the
underlying process just described, we know that a given store will have,
say, more than sixty customers only about 2 percent of the time.

Now, allow customers to act more purposefully and interace with one
another. Suppose that customers prefer to be in less-crowded stores. Such

30One only needs o look at the failure of Long-Term Capital Management in 1993 o
realize the practical importance of this distinction. The woeld in which Long-Term Capital
Management played was one governed by fat-tailed distributions, not the Central Limit
Theorem.

On Emergence *+ 51

an assumption introduces a feedback into the system, whereby customers
who find themselves in the crowded store begin to shop at the other
store. To avoid some odd system-level behavior, we allow only a single
customer per period to make such a decision.” Given this assumption,
in very short order the number of shoppers in each store equilibrates
at fifty. Even if we include small external shocks to the system, for
example, two customers from different stores take a liking to one
another and begin to shop together, the system as a whole will quickly
resettle back to the stable configuration with exactly fifty people in each
store. Thus, the desire to avoid crowding by each individual induces a
negative feedback on the system, resulting in a very stable and predictable
outcome.

Agent interactions can also introduce positve feedback into the
system. Suppose the same group of one hundred people, also does
some banking each day. Imagine that each person has some chance, say
50 percent, of going to the bank and withdrawing money. The bank
has limited reserves to cover withdrawals, and thus if too many people
withdraw their money, the bank will be unable to cover the claims and
become insolvent, causing depositors to panic and demand their money.
If the bank has 60 percent reserves, then, as we saw earlier, around
2 percent of the time the bank will go insolvent, resulting in an
unfortunate “large event” and an all-out run on rhe bank.

In our three worlds we see very different behavior. In the firse,
customers act independently and ignore one another, so the resulting
number of customers shopping at a given store is nicely approximared
by a normal distribution with a mean of fifty and standard deviation of
five. In the second, where customers avoid crowding, we get a degenerate
distribution with each store having exactly fifty customers each day.
Finally, with the potential for panic, the number of customers arriving
at the bank fooks identical to the normal distribution we saw in the first
case when we have less than sixry customers, but once we hit sixty, all of
the remaining weight of the distribution shifts to the right, and we get a
fat upper tail.

The contrasts between these images are startling. The world would
be a lot easier to understand if we could restrict our atrention to the
first two scenarios, that is, if agents either avoid direct interaction with
one another or interact in such a way that strong negative feedback
results in a stable equilibrium. Alas, the vast majority of social science
theory focuses on exactly these two types of ourcomes. Nonetheless,
there are many canonical examples of “large events” that arise in social

4Withous this, there are some dynamics where we can get large swings in the number of
customers as they overreact ro crowding.
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Figure 4.4, Gliders in the Game of Life. A glider in the Game of Life is a
configuration of live cells that “moves” across the space. During each successive
time step {left to right}, the set of live cells is altered based on rhe simple, local
rules (see text) of the game. After four time steps, the original configuration of
live cells is regenerated, only displaced down and to the right by one cell, If lefr
undisturbed, this structure will continue to “glide™ across the space. A more
elaborarte configuration of live cells, known as a glider gun, is capable of
generating such gliders.

systems, such as stock market crashes, riots, outbreaks of war and peace,
political movements, and traffic jams. These events are driven by positive
feedback, arising from perhaps externalities driven by the behavior of
others that change each individual’s costs or benefits from acting {for
example, as rioting breaks out, your chance of going to jail decreases,
and the social benefit of joining in increases) or physical constraints on
behavior {such as when the car in front of you on the hichway slows
down, forcing vou to slow down as well to avoid a crash).

Thinking abour positive and negative feedback provides only a crude
window into the set of possibilities that can emerge in a complex social
system. Many complex systems contain both types of feedback. For
example, consider Conway’s Game of Life. In this game, the world
moves in lockstep and is arrayed on a two-dimensional grid, each cell
of which can either be dead or alive. A dead cell with exactly three live
neighbors is “born” and becomes a live cell next period; otherwise, it
remains dead. A live cell with two or three live neighbors “survives”
into the next period; otherwise, it dies (either out of “loneliness” or
“overcrowding™}. Thus, in this system an intermediate amount of life
begets life {a positive feedback), while too much or too little life leads
to death {a negative feedback). Ultimately, this results in a remarkable
set of global patterns in both space and time that can emerge from this
simple set of microlevel rules. These patterns are so coherent at times
that we can ignore the underlying microlevel rules that generated them
and instead rely on the resulting global structures to predict systemwide
behavior (see, for example, figure 4.4).
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As discussed previously, we have access to some useful “emergence”
theorems for systems that display disorganized complexity. Eoﬁ&é.ﬂ to
fully understand emergence, we need to go beyond these disorganized
systems with their interrelated, helter-skelter agents and begin to develop
theories for those systems that entail organized complexity. Under
organized complexity, the relationships among the agents are mzn.r .mrm:
through various feedbacks and structural contingencies, agent variations
no longer cancel one another out but, rather, become reinforcing. In such
a world, we leave the realm of the Law of Large Numbers and instead
embark down paths unknown. While we have ample evidence, both
empirical and experimental, that under organized complexity, systems
can exhibic aggregare properties that are not directly tied ro agent details,
a sound theoretical foothold from which to leverage this observation is
only now being constructed.



